ECE 588

Fall 2018 Prof. George Gross Room 4052 ECEB

Homework 4

due Thursday, October 25, 2018

[20 points] Consider the following formulation of the basic production simulation problem.
The equivalent load is defined to be

$$L'_{k} = L'_{k-l} - A_{k} \qquad k = 1, 2, \dots$$
$$L'_{o} = L$$

where \underline{L} is the load *r.v.* and \underline{A}_{k} is the availability *r.v.* of generating unit *k*. Let $\underline{L}_{k}'(x)$ be the *I.E.L.D.C.* for this formulation. **Derive** the relationship between $\underline{L}_{k}'(\cdot)$ and $\underline{L}_{k}(\cdot)$. **State** the convolution formula in terms of the $\underline{L}_{k}'(\cdot)$.

2. [30 points] Use the formulation of Problem 1 to derive the expressions for

$$\mathfrak{U}_k = \text{EUE}$$
 after loading of unit k , $k = 0,1,2,...$

$$\mathfrak{E}_k$$
 = expected generation of unit $k, k \ge 1$

in terms of the L_k (•) s.

3. [20 points] Verify the expression

$$\mathcal{L}_{l}(x) = \frac{1}{p_{\alpha}} \sum_{\nu=0}^{k-1} (-h)^{\nu} \mathcal{L}_{j-1}[x - \nu c_{i}] + (-h)^{k} , \qquad (k-1)c_{i} < x \le kc_{i} \qquad (*)$$

where,

$$\sum_{k=1}^{I} = \sum_{k=1}^{L} + \sum_{\substack{k=1\\k\neq i}}^{j-1} Z_{k}$$

 $\mathcal{L}_{I}(\cdot)$ is the *IELDC* corresponding to $\prod_{i=1}^{J}$,

,

and

$$h = q_{\alpha}/p_{\alpha}$$
 with $p_{\alpha} + q_{\alpha} = 1$

4. [20 points] Prove using (*) that

$$\mathcal{L}_{j-1}(x) = p_{\alpha} \mathcal{L}_{I}(x) + q_{\alpha} \mathcal{L}_{I}(x - c_{i})$$

5. [20 points] Consider the loading of an additional block of a unit α with one or more blocks already loaded. Let the unit cost of generation of this additional block be constant and equal to $\lambda\beta$. Assume that its expected generation is $\mathcal{E}\beta$. Show that the expected cost of generation is

$$C\beta = \lambda\beta \mathcal{E}\beta$$

6. [**20 points**] **Develop** the basic convolution formula and the expected energy relation for the case when unit *i* is a 3-state unit:

$$A_{\approx i} = \begin{cases} c_i & \text{with probability } s_i \\ d_i & \text{with probability } r_i \\ 0 & \text{with probability } q_i \end{cases}$$

$$s_i + r_i + q_i = 1$$